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CHAPTER 8

UNIMODALITY IN CIRCULAR
DATA: A BAYES TEST

SANJIB BASU
Northern Illinois University, DeKalb, IL

S. RAO JAMMALAMADAKA
University of California, Santa Barbara, CA

Abstract: Circular data which represent directions in two dimensions, may be
measured as angles. Unimodality, which is often assumed, is a crucial issue since
modeling and further inference depend on it. Just as on the real line, descriptive as
well as inference tools are different for unimodal data as opposed to multi-modal
data. We propose a Bayesian test for unimodality of circular data using mixtures
of von-Mises distribution as the alternative. The proposed test is performed and
evaluated using Markov Chain Monte-Carlo methodology.

Keywords and phrases: Directional data, von Mises distribution, mixture
distribution, Bayes approach

8.1 INTRODUCTION

Suppose we have a set of independent and identically distributed measure-
ments on 2-dimensional directions, say «i, «g, ..., 0n. These measure-
ITf_lents, called angular or circular data, can be represented as points on the
Clrcumference of a circle with unit radius. They may be wind directions,
the vanishing angles at the horizon for a group of birds or the times of ar-
Ival at a hospital emergency room where the 24 hour cycle is represented
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as a circle. Such data may have one or more peaks or show no preferred di-
rection at all, i.e., correspond to an isotropic or uniform distribution. Most
circular statistical inference about preferred directions or modes starts af-
ter eliminating the last possibility namely that the data has no preferred
direction i.e., that it is not uniformly distributed. The next step is to ask if
there is just a single mode or if the data is multimodal, which is the subject
of this paper.

As an example, consider a meteorologist studying wind directions. Based
on past data, (s)he might be interested in knowing if the wind direction is
predominantly in one direction or whether it is indeed different say at dif-
ferent times of the day or week. Similarly in calculating the directional
spectrum of ocean waves, it is crucial to know whether we are dealing a
unimodal or multimodal spectrum.

Circular data involves observations 6 which are angles, i.e, 0 < 6 < 27.
Such data are inherently periodic, i.e., # = (6 + 27 k) for any integer k.
This inherent periodicity sets apart circular statistical analysis, from the
more common “linear” statistical analysis where one uses methods and
models based on the mean, variance, etc. Such models and methods are
not appropriate in circular statistics.

In standard(linear) statistics, a univariate density f is unimodal or has
a single mode if f is non-decreasing up to a point M and non-increasing
thereafter. In circular statistics, however, due to the circular nature and
lack of well-defined left and right endpoints (such as —co and oo in real
line), the definition of unimodality also requires an antimode A. We will
say that a circular probability density p(f) is unimodal with mode at M if
there exists an antimode A such that p(6) is non-decreasing for A <0 < M
and is non-increasing for M < 8§ < A.

Knowledge of the number of modes of p(#) is clearly of importance
in circular statistics. For instance, a common example of circular data
involves the vanishing directions of pigeons when they are released some
distance away from their “home”. The underlying scientific question relates
to how these birds orient themselves. Are they flying towards their “home-
direction”? Unimodality of the density p(6) here would imply that pigeons
have a preferred vanishing direction and is a hypothesis of considerable
scientific interest.

As another example, several stations measure the mean wave direction
every hour which corresponds to the dominant energy of the period. The
wave directions depend on weather conditions, ocean currents and many
other natural factors. The daily variation of the wave directions is an
example of circular data on a 24-hour cycle. The hypothesis of unimodality
here would imply that there is an overall preferred direction around which
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the daily variations of the wave directions are distributed.

In linear statistics, the problem of estimating the number of modes
and/or statistical tests for discovering the presence of more than one mode
are considered by many authors. The earliest approach involve modeling
multimodality through mixtures of distributions, see Wolfe (1970). Later
works include several different approaches, density estimation and bump
hunting [Good and Gaskins (1981), Silverman (1981)], distance of empirical
distribution from the closest unimodal distribution [Hartigan and Hartigan
(1985)] and the approach of excess mass functional [Miiller and Swatzki
(1991)]. Recently, Basu (1995) proposed a Bayesian test for unimodal-
ity using the Khintchine representation which states that every unimodal
distribution on the real line can be represented as a mixture of uniform
distributions.

We address a similar problem here but in the context of circular data.
Let 81,...,0, be ii.d. observations from the circular density p(8). We
want to test Hy : p(d) is a unimodal against the alternative that it is
not. We propose a Bayesian test which incorporates observed data and
prior information. In this test, we restrict ourselves to the class of models
whose density p(#) can be represented parametrically as a mixture of two
von-Mises distributions. After observing the data 61, ...68,, the joint prior
distribution of the mixing proportion and the location and scale parameters
of the two components are updated to their joint posterior distribution. The
posterior probability of p(f) being unimodal is then compared to the prior
probability of unimodality to make a decision between Ho and H;. These
probabilities are computed by Markov Chain Monte Carlo sampling. In
fact, one of the major strength of the proposed method is the simplicity of
the computations involved; they are mostly direct simulations from popular
densities which can be routinely implemented.

8.2 EXISTING LITERATURE

Many excellent books discuss statistical analysis of circular data, including
Mardia (1972), Batschelet (1981) and Fisher (1993). We refer the reader
to these books and the references therein. However, there does not seem to
be any work on tests for unimodality of circular data.

_ The circular data literature, related to this article can be broadly divided
Into three groups. The first group involves tests for randomness against a
unimodal alternative. Here the null hypothesis is isotropy, modeled by the
uniform distribution on the circle. A common test for this against the von-
Mises distribution, is known as the Rayleigh test. This test based on the
length of the sample resultant, is known to be uniformly most powerful
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invariant test; see, for instance Mardia (1972, pp. 180-182). For other tests
which are more nonparametric, see Section 3.1 of Rao (Jammalamadaka)
(1984).

Another set of references which could be related to the question we are
studying comes from the density estimation point of view. Semiparamet-
ric and nonparametric density estimation for circular data are studied by
many, for example, see Bai et al. (1988). From a density estimate one can
determine the number of modes. However, tests of hypotheses are harder to
come by since this involves the much harder problem of density estimation.

Other related work is on mixture distributions and estimating the num-
ber of mixing components, etc; see Mardia (1972), Bartel (1984). Spurr and
Koutbeiy (1991) proposed a stepwise procedure for testing for the number
of components in a von-Mises mixture, by first testing for one component
against more than one, then two components against more than two and
so on. This is a Bootstrap based test and can be computationally inten-
sive. We point out here that a two or more component mixture can still be
unimodal and hence the problem we are addressing is clearly distinct from
these articles.

We also mention here that Mardia and Spurr (1973) developed a multi-
sample test for data drawn from a L-modal population which they model by
a mixture of a scaled von-Mises distribution on [0,27/L), another scaled
von-Mises distribution on [27/L,4n/L) and so on. Our approach is also
quite distinct from this work.

8.3 MIXTURE OF TWO VON-MISES DISTRIBUTIONS

We are given n ii.d. circular observations 61,...,6, (0 < 6 < 2m) from
an unknown circular density p(f) and want to test Ho : p(f) is unimodal
against H; : p(f) is not unimodal. We model p(f) parametrically as a
mixture of two von-Mises distribution,

p(0) = mom(0)pu1, k1) + (1 —m) vm(0|pe, K2) (8.3.1)

where vm(0|p, k) = exp(kcos(d — u))/{2mlo(k)}, 0 < 6 < 27 denotes
the density of a von-Mises distribution. Here Iy(x) is the modified Bessel
function of order 0.

The von-Mises distribution vm(f|y, x) plays a central role in circular
statistics, quite similar to that of the normal distribution in linear statistics.
The parameter g (0 < p < 2m) is called the mean direction. The von-
Mises distribution is symmetric and unimodal about . The parameter
k > 0 is the concentration parameter (similar to a precision parameter)
and measures the concentration of mass around p. Note that while the
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mean direction parameter 4 is angular (i.e., 0 < p < 27), the concentration
k is a positive real parameter, a fact useful our posterior simulations. As
% — 0, the von-Mises distribution converges to the uniform distribution
on the circle whereas as k — 0o, the von-Mises distribution converges to
a degenerate distribution at u. The popularity of von-Mises distribution
in circular statistics stems from the fact that closed form results are often
available for the sampling distributions of statistics from this model which
are almost impossible for most other circular distributions. We refer the
reader to books by Mardia (1972), Fisher (1993) for further properties of
this distribution.

There are several advantages to modeling p(f) parametrically as von-
Mises mixture. A 2-component von-Mises mixture allows a wide variety
shapes (based on various choices of the parameters py, 2,51, k2 and )
which includes symmetric and asymmetric, as well as both unimodal and
bimodal densities. In Figure 8.1 we show three such mixtures to illustrate
the different shapes and modality choices that are possible. Secondly, the
conjugate prior for the mean direction of a von-Mises distribution is known
and is another von-Mises distribution. This structure provides a flexible and
at the same time, a mathematically convenient prior structure. Thirdly, if
p(6) is a 2-component von-Mises mixture, then a complete mathematical
characterization is available about when p(f) is unimodal and when it is
not. This characterization, due to Mardia and Sutton (1975), is described
next.

Let p(8) = mvm(Blu1, k1) + (1—m) vm(B|uz, ko). By appropriate choice
of the zero direction, one can assume that y; = 0 and 0 < po < 7. The
characterization is stated in this parametrization.

Case 1. This is a boundary case when pg = 7, i.e., the two means are
at the opposite ends of the circle. Then the density p(6) is bimodal
if and only if the mixing proportion 7 satisfies p; < 7™ < ps where
p1 = {1+ K exp(k1 + k2)} !, p2 = {1+ k¥ exp(—r1 — k2)}~1, and
k* = {k1lo(k2)}/{r2lo(k1)}. In this case, the two modes are at m
and 2.

Case 2. This is the important case when 0 < pg < 7. Then the density
p(0) is bimodal if and only if p} < m < pj and sinuy < h(68) Here
oy ={1- k*/u(@)}L, j = 1,2 k* is as defined above, u(f) =
{sin(f — o)/ sin 6} exp(ko cos(f — pip) —k1 cos 0} and 0 < 61 < 0z < po
are the two solutions of the equation h(f) = sin pp. Finally, h(f) =
sin 0 sin(f — pig){ Ko sin(Omug) — k1 sin 6} and 0 maximizes k() within
0 < @ < uo which further can be obtained as the real root of a cubic

equation.
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Mardia and Sutton (1975) also provide information on the location of the
mode(s) and antimode(s) of the mixture density p(f) which are omitted
here as they are not of primary importance in our context.

8.4 PRIOR SPECIFICATION

We next specify the prior models for the parameters of the mixture density
p(#). Note that this density has five parameters, the mixing proportion m,
the two mean directions g1 and pg and the two concentrations k1 and Ko.
For the mixing proportion m, we assume a Uniform[0, 1] prior which reflects
our prior uncertainty about its value.

We next describe the prior distributions for the mean directions p;, ¢ =
1,2. Note that the von-Mises distribution can alternatively be written as
o6l k) = {27 Io(k)} " exp(rn 1) where 17 = (1,m2) = (cos u,sin )
and iT = (I3,12) = (cosf,sin@). This alternative representation shows
the exponential family structure of the von-Mises digtribution. Using this
structure, Mardia and El-Atoum (1976) showed that a conjugate prior for
1 in the vm(0|p, k) sampling density is another von-Mises distribution, say
7(p) = vm(v, ).

We use this convenient conjugate structure in our formulation and as-
sume that the two mean directions, p;, j = 1,2, have two independent
von-Mises prior, vm(v;,7;), j = 1,2. Within the von-Mises parametric
structure, the choice of the hyperparameters v;, 7, actually provides con-
siderable flexibility in modeling different prior opinion. Note that as 7;
tends to zero, the vm(v;, ;) prior tends to the uniform distribution on the
circle. Thus, one can specify small values for the hyperparameter 7; to
reflect prior ignorance about ;.

Finally we specify the priors for the two concentration parameters s
and ke. The concentration parameter of a von-Mises distribution does not
have a conjugate prior (due to the presence of the modified Bessel function
Iy(x) term). However, as we noted before,  is not restricted to a circular
domain and can take any positive real value. A popular prior choice for pre-
cision parameter is a Gamma prior. We assume that the two concentration
parameters x;, j = 1,2 have two independent Gamma(ey, 8;), j = 1,2
priors. In fact, many other prior choices for k; are possible. Basu and
Jammalamadaka (1999) describe a broad class of prior choices for x; and
describe how the unimodality test can be carried out for any prior selection
from this broad class.
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8.5 PRIOR AND POSTERIOR PROBABILITY OF
UNIMODALITY

In the following, we first repeat the complete model structure.

e We observe circular observations 01, ...,0, i.i.d. from the the density
p(8) = mom(B|p1, k1) + (1 — m)vm(f|uz, k2). This results in the
likelihood

L(m, 1, pha, K1, K2)

= [0 = [T{momilu, 1) + (1 —7) om(biluz, 52)}
=1

i=1

(8.5.2)

e The mixing proportion 7 has a Uniform0, 1] prior distribution.
o The prior for p; is p(u;) = vm(v;,75), 7 =1,2.
e The prior for «; is p(k;) = Gamma(a;, 8;), j = 1.2.

Our proposed Bayesian test of unimodality is performed by comparing the
prior probability from this model with the posterior probability of uni-
modality. The computation for these probabilities are described next.

The prior probability of unimodality is the integral of the joint prior
density of (m,u1,pe,s1,k2) over the region of the joint parameter space
(as described in the Mardia and Sutton (1975) result of Section 8.3) on
which the mixture density p(d) is unimodal. While the joint prior density
p(m, i1, pla, K1, kiz) can be easily written down, the form of the unimodal-
ity region in the five-dimensional space of (m, 1, t2, K1, k2) described in
the Mardia and Sutton (1975) result is highly complicated and hence the
resulting integral is analytically intractable. We instead obtain a Monte
Carlo estimate of the prior probability of unimodality as follows. (i) Let
¢ = (m,p1, p2, k1, K2). We generate i.i.d. samples {¢ ® .= 1,....,71}
from the joint prior distribution of ¢ . (i) For each generated ¢ ® we
examine if the resulting mixture density p(6) is unimodal by checking the
Mardia-Sutton condition. (4#i) Finally, we obtain a simulation-consistent
estimator of the prior probability of unimodality as {Number of generated
Q(t) for which the resulting p(6) is unimodal}/7;. Due to the indepen-
di?nce structure, simulation from the joint prior can be done component-
Wise, which only involves random variate generation from some common
densities. Further, checking the Mardia-Sutton condition for a given value
of ¢ is also relatively straightforward.
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The other probability required for the assessment of modality is the
joint posterior probability of the parameter region on which the mixture
density p(f) is unimodal. We plan to estimate this probability also as a
Monte Carlo average, i.e., once we have samples {(Em v b= 1,0, ThY
from the joint posterior distribution, we can simply estimate the posterior
probability of unimodality by following the method outlined in the previous
paragraph.

The joint posterior distribution p(7, g1, pa, K1, K2 | data) is, however, an-
alytically intractable and hence direct generation ¢ = (70, p1, o, 1, K) 18
very hard. We, instead, take recourse to Gibbs Sampling. We refer the
reader to Gelfand and Smith (1990), Casella and George (1992) and the
collection of papers by Gilks et al. (1995) for the theory, implementation
and convergence issues of the Gibbs sampler. The main idea of the Gibbs
sampler is to simulate alternately and iteratively for the conditional poste-
rior distributions of each unobservable given the data and other observables.

The details of the Gibbs sampler for our model including the form of
the full conditional distributions and how to simulate from this conditional
distributions is described in Basu and Jammalamadaka (1999). We note
here that latent variables I, ..., In are introduced in the implementation of
the Gibbs sampler. [; is an indicator variable denoting the component from
which 0, is coming, 1.6., 0] 1; = 1 ~ vm(p1, k1), OilI; = 2 ~ vm(pg, K2), 1=
1,...,nand Ii,..., I are L.id. with P(I; = 1) = m, P(Li = y=1-m
a priori. For further details of the Gibbs sampler, the reader is referred to
Basu and Jammalamadaka ( 1999).

8.6 THE BAYES FACTOR

Standard Bayesian solution to a hypothesis testing problem involves
formulating parametric models for null (Hg) and alternative (H) hypothe-
ses and subsequently choosing one over the other in the light of the data
and prior opinion. Perhaps the most widely used selection criterion used
in this context is the ‘Bayes factor of Hy against Ho' formally defined as
the ratio Bijg = po;;f;;o;ﬁl(;ds = ﬁ%g;ﬁg%k;giﬁ:—‘:i The Bayes factor is used
as a summary of evidence of H, against Hy provided by the data. Thus,
operationally, Bayes factor has the same role as that of a P-value in classi-
cal hypothesis testing scenario (see the review article by Kass and Raftery
(1995) for an illuminating discussion comparing Bayes factor and P-values).
From another perspective, the Bayes factor is similar to the likelihood ra-
tio statistics as the former is the ratio of the marginal likelihood under
Hy against that over Hy. The following Table 8.1 provided by Kass and
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Raftery (1995) gives a rounded scale for interpretation of Big and log Big.

TABLE 8.1 Evidence in support of alternative model
from Bayes factor

B log Big evidence for M
<1 <0 negative (supports My
1to3 Otol barely worth mentioning

3to12 1t02.5 positive
12 to 150 25tob strong
> 150 > 5 very strong

For our test of Hy : p(6) is unimodal against Hy : p(#) is non-unimodal,
we report the estimated Bayes factor Big. This is easily obtained once we
estimate P(Hp) = prior probability of unimodality and P(Hy |data) = pos-
terior probability of unimodality by the Monte Carlo methods mentioned
in section 8.5.

8.7 APPLICATION

We consider data collected by Schmidt-Koenig (1963) in an experiment to
determine how do birds determine directions and orient themselves. In
this experiment, 15 homing pigeons were released about 16.25 kilometers
northwest from their loft. The measurements listed in Table 8.2 are their
vanishing directions measured in degrees. The direction of the loft is 149°.

TABLE 8.2 Vanishing direction of 15 homing pigeons. The loft
direction is 149°

[ 85 135 135 140 145 150 150 150 160 285 200 210 220 225 270 |

These data have been analyzed by several authors, including Mardia
(1972) and Fisher (1993). As can be seen in Table 8.2, most of the obser-
vations are concentrated around south (180°) with two observations in the
east and west direction. Fisher (1993) reports that a goodness-of-fit test
reveals there is some evidence a von-Mises distribution may not be a totally
adequate description of the data.

We apply our proposed Bayesian modality test to these circular data.
The following priors are used: (2) m ~ Uniform(0, 1), (i) p1 ~ vm(0°,0.25)
and iy ~ ym(180°,0.25), and (iii) k; ~ Gamma (1,5), 5 = 1,2 where
Gamma(q, ) has density proportional to 2%~ Lexp(—z/f). These are mod-
frately flat priors and the mean directions for w1 and po are chosen in
OPposite directions.
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The prior probability of unimodality is estimated based on 100,000 sam-
ples generated from the above prior model and then following the method
outlined in Section 8.5. We estimate the prior probability of unimodality
to be 0.48867.

The posterior probability is estimated from 50,000 MCMC samples
generated from the posterior after an initial burn-in of 10,000 and then
once again following the method of section 8.5. Figure 8.2 shows the ker-
nel density estimates of the posterior density for the two mean directions
{41, ko, the two concentration parameters 1, kg and the mixing proportion
7. These density estimates are obtained using the CODA software [Best
et al. (1996)]. The posterior summary estimates (posterior mean, stan-
dard deviation and percentiles) of these parameters are shown in Table 8.3.
We check convergence of the MCMC sampler using different convergence
and stationarity checks available in CODA. The autocorrelation plots at
different lags based on the simulated samples of k1, k2, t2, o and m are
shown in Figure 8.3. High autocorrelations typically imply slow mixing
and slow convergence. In Figure 8.3, the autocorrelations for x; and kg
die out quickly. The autocorrelations for p; and gz do not die so quickly
whereas 7 has significant autocorrelations till lag 20.

TABLE 8.3 Estimated posterior mean, standard deviation and
percentiles of p1, ti2, K1, £2 and T

Posterior Mean | Posterior Std. Dev. Percentiles
(2.5%, 25%, 50%, 75%,97.5%)
U1 185 56.4 (61.8,152,180,220,311)
1o 184 51.1 (81.2, 152, 179, 216, 296)
K1 3.18 3.24 (0.22, 1.39, 2.22, 3.75, 12.2)
K2 3.21 3.20 (0.28, 1.40, 2.24, 3.81, 12.1)
T 0.50 0.28 (0.03, 0.27, 0.50, 0.73, 0.98)

The posterior probability of unimodality from the generated MCMC
samples is estimated to be 0.68382. Based on these prior and posterior
probabilities of unimodality, the Bayes factor for non-unimodality against
unimodality is estimated as Bjo = 0.44188. Thus, the data do not provide
almost any evidence against the null hypothesis of unimodality. This is also
evident from the posterior density estimates in Figure 8.2. The posterior
density estimates of p1, e and k1, ko are almost identical, which probably
indicate that the two components of the mixture density are close to iden-
tical or that the mixture density is just a single von-Mises distribution. If
this is true, then the mixing proportion 7 becomes redundant which could
explain the large spread in its posterior density estimate and its autocorre-
lations staying on for up to lag 20.
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We further compute the predictive density of a new circular observa-
tion p(# | data) conditioned on the 15 vanishing directions already observed.
This is obtained as

p(g | da‘ta‘) = /p(0|7r7 K1, U2, K1, H?) dﬂ-(”a M1, H2, K1, Ko I data’)

where (7, ji1, pi2, K1, Ko | data) is the posterior distribution of the parame-
ters. This predictive density is estimated on a grid of # values where the
integral above is estimated by the Monte Carlo average of the generated
MCMC samples. This estimated predictive density in Figure 8.4 exhibits
a clear unimodal structure and provide further evidence to our test result.

8.8 SOME ISSUES

A. Identifiability: In mixture modeling, identifiability of parameters is
typically of concern. To see how identifiability issues may arise in our
two-component von-Mises mixture model, consider the likelihood function
defined in (8.5.2). It is easy to see from (8.5.2) that L(m, uq, pio,s1,K2) =
L(1—m, po, pi1, K2, K1), i.e., (T, p1, g2, k1, k2) and (1 —m, pa, 1, Ko, K1) pro-
vide identical likelihood. In Bayesian analysis, non-identifiability is often
avoided by bringing in separation of parameter values in the prior model-
ing. However, if (u1,u2) and (k1,k2) have exchangeable priors and if the
prior for 7 is symmetric around 1/2, then the prior and hence the posterior
also fails to identify between (m,p1, o, K1, 62) and (1 — 7, ug, u1, K2, K1).
While non-identifiability is not a formal problem in Bayesian inference, it
may lead to very slow convergence of the MCMC sampler. The resulting
inference could also be troublesome. for example, the posterior distribution
of 11 may appear to be bimodal due to concentration of mass around the
mean directions of both components.

One way to ensure identifiability is to put some prior constraints on the
parameter space. For example, a common constraint put in two component
mixture is p; < po. In Bayesian analysis, this constraint can be brought in
very naturally by simply defining the prior support to be the constrained
Space. This constraint makes all the parameters identifiable. Bayesian anal-
y8is under this constraint can be carried out in a straightforward manner,
however it does bring in complications within the MCMC sampler. The
full conditional distributions of both o1 and pp are now constrained by
the other parameter. Robert (1996) discuss the issue of parameterizations
E_fld constraints in the context of normal mixture models and suggests the
Yeparametrization o= py and XN = po — gy where A is assumed to non-
Negative a priori. This reparametrization generally achieves more stability
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within the MCMC sampler and faster convergence.

B. Choice of two component mixture. We model the sampling distri-
bution as a two component mixture of von-Mises distribution. This model
allows substantial flexibility as the mixing proportion m, the two mean di-
rections piy, pp and the two concentration parameters ki, ks are allowed
to vary thus resulting in different shapes and scales of the mixture density.
However, a two-component mixture can at most produce a bimodal density.
Thus, if data generated from a tri-modal or multi-modal distribution is fed
into our model, it is not obvious how our proposed test will behave. Sec-
ondly, the unimodal or non-unimodal densities that can he obtained within
our model are only those which can be characterized as two-component mix-
tures of von-Mises distributions. We thus do not have extensive flexibility
on the functional form of the density.

The problem of more than two modes can be addressed by considering

k

a k-component mixture density model: p(d) = >_ ; vm(f|p;, k) where
k =
3> m; = 1. The analysis for such a model can be performed in an analogous
=1

inanner with some minor modifications in the full conditional distributions
of the parameters. However, the identifiability issues discussed above be-
comes more severe and convergence issues in the MCMC sampler becomes
more critical. Another problem is how to determine the value of k. One
can put a hierarchical structure to the problem by assuming a prior dis-
tribution supported on positive integer values for k. This, however, makes
the problem very hard as it now becomes a variable dimension problem
and one may need to use the reversible jump algorithm to move from one
dimension to another within the MCMC sampler. Green and Richardson
(1997) recently addressed this variable dimension problem in the context
of normal mixtures.

Mixtures of more than two components allows somewhat more flexibil-
ity in the functional form of the mixture density. Further flexibility can be
obtained by semiparametric modeling. For example, in real line, all uni-
variate unimodal distributions can be characterized as mixtures of uniform
distributions (known as the Khintchine representation). This mixture rep-
resentation is often used in modeling univariate unimodal distribution, one
then assumes a prior on the mixing distribution of the uniforms. A simi-
lar representation also exists for unimodal distributions on the circle, they
can also be written as mixtures of uniform distributions [see Fang et al.
(1989)]. We are currently developing a semiparametric test for unimodality
of circular data based on this representation.
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;RIEURE 8.1 Three von-Mises mixtures: Top = 0.5vm(8| — 90°,2) +
ﬂ-5vm(9|90°,2), Middle = 0.6 vm(6| — 45°,1.5) + 0.4vm(6|45°,1.5), Bottom
= 0.65vm (9| — 60°, 2) + 0.35 vm (8| 90°, 2)
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FIGURE 8.2 Kernel estimates of the posterior density of the parameters
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